Problem bank for "Week 10" material: Relative Extrema; Higher Derivatives, Concavity, and the Second Derivative Test

27 Oct 2020

Group 1

textbfApplication to Business and Economics
The demand equation for telephones at one store is

$$
p=D(q)=200 e^{-0.1 q}
$$

where p is the price (in dollars) and q is the quantity of telephones sold per week. Find the values of q and p that maximize revenue.

Group 2

Let

$$
f(x)=\frac{x^{2}}{\ln (x)}
$$

Find the x-value of all points where the f has any relative extrema. Find the value(s) of any relative extrema.

Group 3

Let

$$
f(x)=3 x^{5 / 3}-15 x^{2 / 3}
$$

Find the x-value of all points where the f has any relative extrema. Find the value(s) of any relative extrema.

Group 4

Find the open intervals where the following functions are concave upward or concave downward. Find any inflection points.
1.

$$
f(x)=\frac{3}{x-5}
$$

2.

$$
g(x)=\ln \left(x^{2}+1\right)
$$

Group 5

Find any critical numbers for the functions f below and then use the second derivative test to decide whether the critical numbers lead to relative maxima or relative minima. If $f^{\prime \prime}(c)=0$ or $f^{\prime \prime}(c)$ does not exist for a critical number c, then the second derivative test gives no information. In this case, use the first derivative test instead.
1.

$$
f(x)=-x^{2}-10 x-25
$$

2.

$$
f(x)=x^{7 / 3}+x^{4 / 3}
$$

Extra Problems

1. Application to Life Sciences

The mathematical relationship between the age of a captive female moose and its mass can be described by the function

$$
M(t)=369(0.93)^{t} t^{0.36}, \quad t \leq 12
$$

where $M(t)$ is the mass of the moose (in kilograms) and t is the age (in years) of the moose. Find the age at which the mass of a female moose is maximized. What is the maximum mass?
Source: Journal of Wildlife Management.
2. Application to Business and Economics Let $C(q)=80+18 q$ be the cost of producing q units on a product. If the demand equation is $p=70-2 q$, find
(a) the number, q, of units that produces maximum profit
(b) the price, p, per unit that produces maximum profit
(c) the maximum profit, P
3. Find the open intervals where the functions graphed below are concave upward or concave downward. Find any inflection points.

